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Abstract 

Contrast sensitivity is a measure of the ability of an observer to detect contrast signals of particular spatial 
and temporal frequencies. A formal definition of contrast sensitivity that can be applied to individual linear 
visual neurons is derived. A neuron is modeled by a contrast transfer function and its modulus, contrast 
gain, and by a noise power spectrum. The distributions of neural responses to signal and blank presentations 
are derived, and from these, a definition of contrast sensitivity is obtained. This formal definition may be 
used to relate the sensitivities of various populations of neurons, and to relate the sensitivities of neurons to 
that of the behaving animal. 

Keywords: Contrast sensitivity, Maintained discharge. Noise, Signal detection theory, Linear systems, Power 
spectrum 

Introduction 

One of the fundamental goals of vision science is to relate the 
performance of the human observer to the behavior of visual 
neurons. Performance has many dimensions, but one of great 
importance is the capability to signal luminance contrast. Con- 
trast sensitivity marks the border between blindness and sight, 
and is the necessary precursor to most other aspects of perfor- 
mance. It is therefore fitting that contrast sensitivity is a sub- 
ject of intense psychophysical study. However, it is much more 
rarely the subject of electrophysiological experiments. Record- 
ings from single visual neurons have traditionally examined only 
contrast gain, a measure of the spikes produced per unit con- 
trast. Contrast sensitivity, on the other hand, is a measure of 
the ability to distinguish signal from noise. To provide a mea- 
sure of contrast sensitivity, gain must be expressed relative to 
the noise in the output of the cell. One purpose of this paper is 
to provide a more precise formulation of the relationship be- 
tween gain, noise, and contrast sensitivity of linear visual 
neurons. 

Barlow and Levick (1969) first addressed the roles of gain 
and noise in determining sensitivity of retinal ganglion cells. 
More recently, a number of studies have directly measured con- 
trast sensitivity of visual neurons, by estimating the contrast re- 
quired to produce a response larger than the noise (Derrington 
& Lennie, 1982, 1984; Hawken & Parker, 1984; Troy, l983a, b ) .  
A second goal of this paper is to set these experiments, which 
differed in various details, in a common theoretical context so 
that results may be more directly compared. This context also 

Reprint requests to: Andrew B. Watson, MS 239-3, NASA Ames 
Research Center, Moffett Field, CA 94035, USA. 

suggests how these experiments might be made more efficient 
and complete. 

The theoretical context is also designed to allow comparison 
of contrast sensitivities of neurons and of observers. This is an 
essential step towards the goal of explaining the sensitivity of 
the observer. Finally, the general theory may be applied to spe- 
cific models of linear neurons, to examine how their sensitiv- 
ity compares to that of actual neurons. In a later paper, these 
ideas will be applied to models of the linear cortical neuron. 

Model of a stochastic linear neuron 

Here we develop a simple model of a linear neuron whose re- 
sponse is perturbed by noise. The model has two parts: the de- 
terministic spatiotemporal receptive field and the output noise. 

Spatiotemporal receptive field 

The receptive field l ( x , t )  describes the response at time t to 
an impulse of unit time-area-contrast product, located at x = 
(x, y). In practice, it is measured with pulses of small duration, 
area, and contrast, and normalized by the actual product. In 
this formulation, the spatial coordinate system is relative to the 
center of the receptive field. The expected response of the cell 
to an arbitrary signal f (x, t )  is then 

A somewhat more convenient representation is the impulse 
response 
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which allows us to express the cell response as 

where "*" indicates convolution over x ,  t .  
Neural responses in early vision may be either graded poten- 

tials or sequences of impulses. For simplicity, we will regard all 
responses as continuous functions. In the case of spike trains, 
the response is in units of impulses/second, and is to be 
regarded as a suitably smoothed measure of the instantaneous 
rate of discharge. Appendix 1 provides additional detail on the 
relation between a spike train and its smoothed counterpart. 

The receptive field can also be characterized by the transfer 
function 

where the arrow indicates the Fourier transform* and where the 
variables u and w represent spatial and temporal frequencies. 
It is useful to decompose the transfer function into gain and 
phase functions, i.e. 

For simplicity, we will occasionally omit the spatial-frequency 
argument u from the contrast gain G. This is to be understood 
as the temporal contrast gain at a specific spatial frequency. 

Noise 

We represent the noise of a visual neuron as a stationary sto- 
chastic process x ( t )  with autocorrelation function n ( t ) ,  which 
describes the degree of correlation between noise samples at 
time separation t.  We assume that the noise is additive. This will 
certainly not be precisely true for all sources of noise (e.g. quan- 
tal fluctuations), but there is evidence that it is roughly true for 
the total output noise of ganglion cells in the presence of modest 
signals (Enroth-Cugell et al., 1983; Robson & Troy, 1987). It 
is a matter worthy of more extensive study. 

The Fourier transform of the autocorrelation is the power 
spectral density (psd) N(  w) . This describes the power per unit 
frequency bandwidth in the noise process. As we shall see, 
knowledge of the psd is essential to understanding contrast 
sensitivity. 

Measurement of power spectral density 

The variability of visual neural responses has been widely stud- 
ied (Barlow & Levick, 1969; Dean, 1981; Frishman & Levine, 
1983; Levine & Troy, 1986; MacGregor & Lewis, 1977; 

*The definitions of the forward and inverse Fourier transforms used 
here are 

F ( w )  = f(t)e-'2w'dt, L 
J O )  = fWfC~t""'&. 

Multidimensional Fourier transforms are separable versions of this one- 
dimensional transform. 

Rodieck, 1967; Tolhurst et al., 1981; Tolhurst et al., 1983), but 
spectral methods have been applied less frequently (Derrington 
& Lennie, 1982, 1984; Robson & Troy, 1987; Troy, l983a, b )  
A typical method (Derrington & Lennie, 1982) of estimating the 
psd of a cell is to capture a set of K records, each of duration 
T seconds, of the maintained discharge. Each record is then 
multiplied, point by point, by a cosine function of some fre- 
quency, and added up, to compute a cosine coefficient at that 
frequency. The same is done for a sine coefficient. These two 
numbers are squared and added to yield an estimate of the psd 
at that frequency. The same result may be obtained by taking 
the Discrete Fourier Transform of the record, and extracting the 
squared magnitude at the desired frequency. The process is 
repeated for each of the records, and the average and standard 
deviation of the resulting psd estimates are computed. 

To derive the statistical distribution of power estimates ob- 
tained in this way, we note that sine and cosine coefficients are 
each weighted sums of zero mean, approximately Gaussian ran- 
dom variables, and are thus themselves approximately Gauss- 
ian and zero mean. Because the phase of the noise component 
at each frequency is random, sine and cosine coefficients are in- 
dependent. Time stationarity implies that the two coefficients 
have equal variance a. In the limit of long measurement inter- 
val T (which is all we consider here), this variance is given by 

The power z,  computed as the sum of two independent zero- 
mean Gaussians, is therefore equal to a2 times a chi-square 
random variable with two degrees of freedom, and therefore 
has mean and variance 

Additional details on this derivation are given in Appendix 2. 

Amplitude vs. power 

Above we have assumed that the experimenter has used the 
power z at a frequency as the basic measure. An alternative em- 
pirical measure that is often used is the amplitude y equal to 
the square root of power. This will have a Rayleigh density 
(Papoulis, 1965), 

where u(  ) is the unit step function. This has mean and stan- 
dard deviation 

It is interesting that the mean of this distribution does not 
equal the square root of N, but rather is biased downwards by 
the factor 0.886. Thus, if the estimate is to be used directly, or 
averaged with other like estimates, one should either use the un- 
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biased estimator of power, or correct the amplitude estimate by 
the appropriate factor. Note also that the standard deviation is 
proportional to the mean: 

The ratios of mean to standard deviation of the amplitude es- 
timates reported by Derrington and Lennie (1982) and Troy 
(1983a) are very close to this number, suggesting that our as- 
sumptions about the noise process are reasonable. 

An example of a study using an amplitude measure is Troy, 
(1983a). The author has kindly provided his raw distributions 
of estimates of amplitude at eight frequencies. In Fig. 1, these 
have been fit with Rayleigh distributions according to a 
maximum-likelihood criterion. A goodness-of-fit test rejects (at 
the 0.05 level) the Rayleigh distribution in one out of the eight 
cases (42 Hz). The chi-square goodness-of-fit statistic and 
degrees of freedom are indicated in each panel. 

From each fit, we estimate a (indicated by "5=" in each 
panel) and N ( w ) ,  via eqn. (7). The psd estimated in this way is 
shown in Fig. 2. 

How long should T be? 

In estimating the power spectrum, one must decide on the 
length of the measurement interval T. There is a trade-off be- 
tween the size of T and the number of estimates we make. For 
example, suppose we have a fixed total time available of KT 
seconds. By setting K = 1, we can devote this time to one long 
measurement interval. By setting K > 1, we can subdivide the 
interval into several shorter segments. How should K be set? 

First we note that the statistic z ,  on which we base our esti- 
mate of the psd, has a variance which does not depend on T! 
This rather remarkable fact leads us to ask where the extra in- 
formation derived from extending T is going, if not to reduc- 
ing the variance? The answer is that it is increasing the frequency 
resolution of our estimate of the psd. We return to this obser- 
vation momentarily. 

Fig. 1. Distributions of amplitude estimates at eight temporal frequencies, fitted with Rayleigh densities. The data are from 
Troy (1983a) (see Appendix 3). 
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with frequencies u,  w and contrast k (a drifting grating with 
speed w/ \u \ ) ,  

f (x, t )  = k cos [27r(u-x + wt ) ]  , (13) 

Temporal Frequency (log Hz) 

Fig. 2. Power spectral density of a cat LGN cell. Points are derived 
from fitted Rayleigh densities in Fig. 1. 

Since extending T does not reduce the variance, this would 
seem to recommend partitioning the interval with K > 1. If the 
resulting K estimates are averaged, the variance of the mean will 
decline by K, thus increasing the accuracy of each estimate of 
the psd. 

However, the duration Testablishes the frequency resolution 
of the estimate of the psd as l/T. Furthermore, the estimator 
we employ is only asymptotically unbiased. This may be seen 
in eqn. (A8), wherein we assume that the psd is constant over 
the spectrum of the measurement window. This spectrum is 
roughly 2/T wide. Thus, the bias will be small provided that the 
psd does not vary much over this extent. Therefore as a prac- 
tical guide, one must choose T based on the desired frequency 
resolution, and on prior information about the rate of change 
over frequency of the psd. 

If the interval KT is long enough to allow subdivision and 
averaging, then there are in fact two ways to average. One, as 
we have described, is to subdivide by K and compute the mean. 
The second is to set K = 1, thus maximizing frequency resolu- 
tion, and then to average K adjacent estimates in the frequency 
domain (Stremler, 1982). The former method assumes that the 
noise process is stationary over time, the latter that it is station- 
ary over frequency. Both methods reduce both the variance and 
the frequency resolution by K. Finally, the averaging over time 
or frequency may employ a non-rectangular window, such as 
a Gaussian, to provide an estimate that is more localized in both 
time and frequency. 

It is traditional to represent frequency spectra as functions 
of log frequency. This corresponds to a frequency resolution 
that increases in proportion to frequency. If this is desired, the 
value of K may be made proportional to frequency. Thus, for 
example, a noise record of 1 s might be subdivided by factors 
of ( 1,2,4,8,16,32,64] to give resolutions of [1,2,4,8,16,32,64) 
Hz at frequencies of [1,2,4,8,16,32,64) Hz. The same effect 
may be obtained without subdivision by averaging estimates 
over a frequency interval equal to [1,2,4,8,16,32,64] Hz at the 
corresponding frequencies. 

Signal plus noise 

Because we have assumed additive noise, it is clear that the sig- 
nal will merely alter the means of the distributions of sine and 
cosine coefficients. If the input is a spatiotemporal sinusoid 

then the response of the cell will be 

r ( t )  = a cos(27rwt) + b sin(2irwt), (14) 

where 

a2  + b2 = k2C2 (u ,  w). (15) 

The new mean for the cosine coefficient will therefore be 

hc(t) * r ( t ) \ t s ~  = - cos (27rwou)rect (U/T - 1/2) 

x cos [27rw0(T - u)] du, 

where hc(t) is the cosine measurement filter defined in Appen- 
dix 2. Thus. the cower z is now the sum of two Gaussians with . . 

a 0  b 0  
means - and -, and variance a', which is a2 times a 

2 2 
non-central chi-square with two degrees of freedom and non- 
centrality parameter 

If the amplitude, rather than power, is estimated, then the 
resulting distribution is a "non-central Rayleigh" (Papoulis, 
1965). 

To summarize, the distribution of the power estimate for 
noise alone is N(wo)/2 times a chi-square with two degrees of 
freedom. When a sinusoid is present, the distribution is N(wo)/2 
times a non-central chi-square with two degrees of freedom and 
a non-centrality parameter that is determined by gain, by con- 
trast, by duration, and by noise power. Similar expressions, in- 
volving Rayleigh distributions, can be given for amplitude 
rather than power estimates. 

Contrast sensitivity 

Contrast sensitivity is a measure of the ability to distinguish sig- 
nal and noise. Above we have derived distributions for signal 
and noise and we are therefore in a position to construct a def- 
inition of contrast sensitivity. However, there is no single number 
that uniquely describes this ability. In fact, the most complete 
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description is given by the contrast transfer function and the 
psd. A particular experimental procedure or psychophysical 
task defines just one particular measure of contrast sensitivity. 
Hence, there are as many measures as there are tasks and pro- 
cedures. However, if our model is an accurate representation of 
the situation, then many of these measures are derivable from 
one another. We shall illustrate this point by constructing two 
measures, one that is analogous to a "yes/nom procedure, the 
other to a "two-alternative forced-choice" procedure. 

We first consider an experiment designed to measure contrast 
sensitivity, then we put this experiment in a theoretical context. 
The experiment is adapted from (Derrington & Lennie, 1982). 
The essence of the yes/no procedure is to determine the contrast 
that yields a specified proportion correct ph when the signal is 
present (the hit rate), and a specified proportion incorrect pi 
when the signal is absent (the false alarm rate). A trial is scored 
"yes" when the response exceeds some criterion A. 

Within certain limits, the selection of \ is arbitrary (see be- 
low). However, a tradition with some sense is to select a value 
that yields a small, but measurable false alarm rate, 0.05 for ex- 
ample. To locate this value of \, we first collect a number of 
estimates of power z from the maintained discharge, as de- 
scribed above. From these, and knowledge of the underlying 
distribution, we select a criterion power A such that the prob- 
ability of it being exceeded by noise alone is pf = 0.05. 

We next select a spatial and temporal frequency. During the 
course of repeated presentations, the contrast of the signal is ad- 
justed to find a level that yields 50% of the values of z larger 
than A. The inverse of this contrast is a measure of contrast 
sensitivity. 

In the context of our theory, let the cumulative noise-alone 
distribution be Fn (z), and let the signal-plus-noise distribution, 
expressed as a function of the non-centrality p 
Fs(r \ z). Then the criterion A is given by 

ig. 3. 

0.5 I distribution of noise alone 

contrast 

Units of o2 

Fig. 3. Distributions of power estimates for noise and signal plus noise 
at threshold in the yesho procedure. False alarm rate is 0.05, hit rate 

Table 1 .  Values of T for the yes/no procedure for various hit 
and false alarm rates 

Hit 

False alarm 0.5 0.75 

0.05 4.957 8.591 
0.10 3.556 6.770 

The distributions for signal and noise at threshold in the 
yes/no procedure are illustrated in Fig. 3. The noise density is 
chi-square with two degrees of freedom, and the signal-plus- 
noise density is non-central chi-square with two degrees of free- 
dom and non-centrality parameter of 4.96. The criterion at 5.99 
is also shown. The horizontal axis is in units of <r2. 

The non-centrality parameter T that yields an estimate 
greater than the criterion A on ph of the signal trials is given by 

Continuing the example pictured in Fig. 3, if pf = 0.05, and 
ph = 0.5, then T = 4.96. Table 1 gives values of r for various 
hit and false alarm ratesat 

We now rearrange eqn. (17) to express contrast sensitivity 
l /k  in terms of G and N: 

This result is sufficiently important that we restate it in 
slightly different terms, expressing contrast sensitivity explicitly 
as a function of spatial and temporal frequency, and re- 
introducing the spatial-frequency variable to the expression for 
contrast gain. 

This expression shows that contrast sensitivity is essentially 
a signalhoise ratio G/@, scaled by constants T and T that re- 
flect the measurement duration and the criterion performance 
(Table 1). The dependence upon duration illustrates that con- 
trast sensitivity will increase with time, as we expect. It also 
shows that to relate theoretical and empirical measures of con- 
trast sensitivity, one must specify the value of T used. 

fA traditional alternative to selecting a criterion based on particu- 
lar hit and false alarm rates is to select a criterion that is a certain num- 
ber of standard deviations above the mean of the noise-alone samples. 
This number is then analogous to d', the detectability measure of sig- 
nal detection theory (Green and Swets, 1966). A common choice is 
d' = 2. From eqn. (8) above, this gives 

\ = lt, + d'a, = 202 + 2(2a2) = 6u2. 

The distribution of z is a2 times \2, so the false alarm rate is 
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Forced choice 

In a forced-choice procedure, no prior estimate is made of the 
psd. Each trial consists of two presentations, one of contrast k 
and the other of zero contrast. A value of z is computed for 
each presentation, and if the larger corresponds to the high con- 
trast presentation, the trial is a "success," otherwise, a "failure." 
During repeated trials, the contrast is varied to find the "thresh- 
old" contrast yielding a specified proportion of successes, p,. 
A number of methods exist for searching efficiently for the 
threshold (Cornsweet, 1962; Watson & Pelli, 1983; Wetherill & 
Levitt, 1965), or a less efficient method of constant stimuli may 
be used (Watson & Fitzhugh, 1990). If we write fs(z\ r )  for the 
density of signal plus noise, given non-centrality parameter r, 
then the expected proportion correct will be 

Then the value of r corresponding to a particular pc is simply 

Once again we can compute values of T for several interesting 
values of the proportion correct, as shown in Table 2. The value 
of 0.816 is the conventional threshold probability for a WeibuII 
psychometric function (WeibuU, 1951; Watson, 1979). As in the 
yes/no method, eqn. (21) states the relationship between T and 
contrast sensitivity. This means that if the theoretical frame- 
work is correct, then one can measure contrast sensitivity 
equally well by either forced-choice or yes/no methods, and in- 
deed, that one should be able to predict one from the other. 

Amplitude vs. power 

As noted above, the basic measure used in these procedures 
may be either power or amplitude (z  or JZ), The preceding 
derivations for yes/no and forced-choice methods used a power 
measure, which leads to expressions involving chi-square distri- 
butions. The derivations may also be done with amplitude mea- 
sures, in which case Rayleigh distributions result. However, it 
is simple to show that the square-root transformation has no ef- 
fect on the derivations, so that eqn. (21) remains a general 
description of contrast sensitivity. The only caution is that one 
must determine the value of T corresponding to the task in ques- 
tion. For example, Derrington and Lennie (1984) use an ampli- 
tude criterion equal to the mean plus two standard deviations. 
From eqns. (10) and (1 1) this criterion is 

This criterion, applied to amplitude measures, will be func- 
tionally equivalent to its square applied to a power measure. 
Thus, we observe that the false alarm rate in this situation is 
p~ = 1 - Fn [A],  or 0.0374. Next, Derrington and Lennie found 
that contrast for which 50% of the measured amplitudes y were 

Table 2. Values of r for the forced-choice procedure for 
various proportions correct 

P(correct) T 

distribution of noise alone 

distribution of signal + noise, for 
yielding P(x  > criterion) = 0.5 

1. 2. 3. 4 5 6. 7. 

contrast 

Units of a 

Fig. 4. Distributions of amplitude for signal and noise at threshold in 
the yes/no procedure. 

greater than 6. If y > 6, then z > A. Thus, we can substitute 
X = 2.56362 = 6.5720 into eqns. (18) and (19) to obtain T = 
5.541. 

This situation is pictured in Fig. 4. On the left is the Rayleigh 
density describing the distribution of amplitudes for noise 
alone, and on the right is the distribution of amplitudes when 
contrast is sufficient to produce 50% amplitudes greater than 
the criterion A. 

Normalized contrast sensitivity 

Note that for a single cell with unchanging behavior, one can 
obtain many different estimates of contrast sensitivity, depend- 
ing on the conditions of measurement and their reflection in the 
values of T and T. To allow comparisons that are unconfounded 
by these values, it may be useful to consider a normalized con- 
trast sensitivity, 

As a rule of thumb, when T = 1 s and proportion correct in 
a forced-choice (2AFC) task is 0.816 (the conventional thresh- 
old for a Weibull function), then normalized contrast sensitiv- 
ity is just twice contrast sensitivity. 

Neurometric functions 

The complete description of signal and noise distributions al- 
lows the construction of "neurometric functions" (Tolhurst et al., 
1983) which describe the probability of a criterion response as 
a function of contrast. The yes/no neurometric function may 
be derived from eqns. (18) and (19). The forced-choice neuro- 
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logio contrast 

Fig. 5. Simulated 2AFC neurometric function. Points are values cal- 
culated from eqn. (22). The curve is the best-fitting Weibull function 
(@ = 2.090). 

metric function is given by eqn. (22), and an example is shown 
in Fig. 5. 

The Weibull function 

is a widely used template for both psychometric and neuromet- 
ric functions (Nachmias, 1981; Quick, 1974; Tolhurst et al., 
1983; Watson, 1979; Weibull, 1951). For comparison, the best- 
fitting Weibull function (with -y = 0.5) is also shown. The slope 
of the Weibull function has been a subject of some study. For 
ideal detection in Gaussian noise, it should have a value of 
about 1.4. Higher values may reflect uncertainty about the sig- 
nal (Pelli, 1986). Typical psychophysical estimates are about 
3.5. The curve in Fig. 5 has a slope of ,9 = 2.090. 

Unfortunately, the only published study of neurometric 
functions is for cortical cells, and for a measure consisting of 
total spikes during an interval, rather than the power of a Fou- 
rier component (Tolhurst et al., 1983). The slope in this one case 
was ,9 = 1.29. 

Psychophysical sensitivity 

Consider an observer who must detect a spatiotemporal sinu- 
soid based only on the response of a single neuron. Theoreti- 
cally, optimal performance, characterized by a so-called "ideal 
observer," depends upon the prior knowledge assumed of the 
observer. If the observer is certain as to the temporal frequency, 
but uncertain as to the phase of the signal, then the ideal pro- 
cedure is to compute the power (or amplitude) at the signal fre- 
quency, as we have done above. Thus, if the observer acts as 
this type of ideal observer, psychophysical contrast sensitivity 
will be exactly as described by eqn. (21). This provides a rigor- 
ous means of predicting psychophysical sensitivity from the re- 
sponses of single neurons. 

There are a number of caveats to this direct prediction. First, 
the observer may be less than completely uncertain as to phase, 
particularly for a signal of extended duration, and may thus 
perform better than the direct prediction. Second, the observer 
may be less than completely certain as to temporal frequency, 
thus reducing performance. Both of these effects are likely to 
be modest in size. Limited vigilance or memory would preclude 
ideal performance at very long durations. 

Of potentially greater consequence is the role of other neu- 
rons. Other neurons may help or hinder, depending upon 

whether they respond to the signal in question. If the observer 
attends to neurons that do not respond, performance will be 
degraded. For example, if 100 neurons are attended to, of 
which only one responds to the signal, sensitivity may be re- 
duced by about 2.8 (Pelli, 1986). But if the other neurons do re- 
spond to the signal, they may improve performance, through 
either summation of responses or of probabilities. Probability 
summation would arise if each neuron individually decided 
whether the signal was there, and these decisions were pooled 
(Green & Luce, 1975; Robson & Graham, 1981; Watson, 1979). 
If the responses are independent, probability summation would 
increase sensitivity by a factor of roughly n1l4, where n is the 
number of cells. Again if n = 100, this factor is 3.16. Signal 
summation would arise if the responses of the several neurons 
are linearly combined by a cell later in the visual pathway. This 
sort of summation produces large improvements in sensitivity, 
essentially proportional to n 1 / 2 ,  which in turn is proportional 
to the width of the summation area. The process of signal sum- 
mation is dealt with at greater length in a forthcoming paper 
(Watson, 1990). 

The two effects likely to produce the largest increments in 
sensitivity over the direct prediction, signal summation, and 
probability summation, can occur only if the signal extends over 
an area larger than a single receptive field. Thus, we should ex- 
pect the direct prediction to be most accurate when the signal 
is of the same size as the receptive field. 

Discussion 

In the preceding sections, we have derived expressions for es- 
timates of the power spectral density of the response of a lin- 
ear neuron. For noise alone, these estimates follow a chi-square 
distribution with two degrees of freedom. For signal plus noise, 
they are non-central chi-square with two degrees of freedom. 
Knowledge of these distributions enabled us to then construct 
an equation formally relating contrast sensitivity to contrast 
gain, noise power spectral density, signal duration, and a fac- 
tor of T that depends upon the measurement method. Values of 
T were provided for several common methods. We also derive 
an equation for the "neurometric function" of a cell, describ- 
ing the probability of a given percent correct as a function of 
contrast. We note that these equations allow direct comparison 
of contrast sensitivity of cells and observers, although various 
caveats must be observed. 

Although contrast sensitivity is a useful and widely used 
measure of visual performance, it is not a complete description 
of the behavior of the cell. First, it confounds gain and noise 
by taking their ratio. A more complete description would keep 
these two functions separate, and we may hope that future 
physiological experiments will take this step. Second, the com- 
plete contrast transfer function is composed of both gain and 
phase, but only the former is retained in measures of contrast 
sensitivity. Again, a more complete measurement would be that 
of the complete transfer function. Some recent studies have 
made the necessary phase measurements (Enroth-Cugell et al., 
1983; Hamilton et al., 1989), and we may hope this trend con- 
tinues. When the complete psd and transfer function are avail- 
able, predictions of contrast threshold for arbitrary stimuli and 
arbitrary response criteria become possible. 

One goal of this work was to provide a formal basis on 
which to relate the sensitivity of cells at various levels in the vi- 
sual pathway. For example, how does the contrast sensitivity of 



a population of ganglion cells constrain the contrast sensitivity 
of geniculate and cortical cells? The equations derived in this 
paper provide the basis for answering this question, and these 
answers are presented in a forthcoming paper (Watson, 1990). 
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Appendix 1 

The conversion from a spike train to power spectrum may be 
done in either of two ways. Consider the train as a sequence of 
impulses at times tk. This has a transform that is the sum of 
complex exponentials: 

Expanding the exponential into more familiar sine and cosine 
terms, the power density estimate at a frequency w can be writ- 
ten as 

The first method is a direct implementation of this expression, 
wherein sine and cosine functions are evaluated at the occur- 
rence times of the spikes, accumulated, squared, and added. 

The second method is to accumulate spikes within bins of 
duration D, and to regard this sequence of counts as a measure 
of instantaneous rate. This is equivalent to convolving the spike 
train with a pulse of duration D and sampling at intervals of D. 
In the frequency domain, this is equivalent to multiplying the 
Fourier transform of the spike train by a sine function whose 
first zero is at D .  This will produce some attenuation for 
higher frequencies relative to the first method, but for small D, 
the effect will be modest. For example, Derrington and Lennie 
(1982, 1984) and Troy (l983a, b) used D = 6 ms, so D-' = 167 
Hz. This leads to an attenuation of about 10% at the highest 
time frequency they used (42 Hz). Likewise sampling at inter- 
vals of D will replicate the spectrum at intervals of D ' ,  but 
with a 6-ms bin effects from this source will be negligible. 

Appendix 2 

Measurement of power spectral density is a standard topic in 
engineering texts (Parzen, 1962; Stremler, 1982). Here we pro- 
vide a derivation suited to electrophysiological measurement. 

We define a cosine measurement filter with impulse response 

This is a cosine function multiplied by a rectangular pulse that 
starts at time 0 and ends at time T. The pulse represents the 
measurement interval. We arrange that T is an integer multiple 
of l/w0, the period of the cosine function. 
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Let the noise be a stationary process x( t )  with psd N (  w). 
Create a new process c ( t )  by filtering x(t) ,  i.e. 

The mean of a linear filtering of a stationary process is the 
mean of the input times the integral of the filter impulse re- 
sponse. Since T is an integral number of cycles of the cosine, 
this integral and hence the mean of c ( t )  are zero. 

The psd of a filtered process is the psd of the input times the 
squared gain of the filter, so this new process will have psd 

The variance of a zero-mean process is the integral of the psd, 
so we have 

The squared gain of the filter is given by 

The first zero of the sinc( ) function is a distance 1/T from WO. 

If T is large, then each lobe of Hc will be narrow, and N will 
be effectively constant over the integral, in which case 

From Parseval's Theorem, 

Substituting for hc(t) [eqn. (A3)], and making use of the 
rect( ) function to set the limits of integration, 

For Two integer, this reduces to 

We produce a second process s ( t )  identical to c( t )  except 
that it uses a sine filter. It will also have the same mean (zero) 
and variance as c(t) .  Because the phase of the component at 
frequency wo is random, c ( t )  and s ( t )  are independent. 

When we make a measurement, we take samples c and s 
from the filtered processes. We now take the sum of squared 
sine and cosine coefficients, 
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Since both c and s are linear combinations of random vari- 
ables, they are likely to be approximately Gaussian,$ and z will 
be the sum of two squared zero-mean Gaussians with variance 
u2, which is u2 times a chi-square with two degrees of free- 
dom. The mean and standard deviation are then 

Appendix 3 

The following are some notes on specific reports that have used 
a signal/noise method to estimate contrast sensitivity in visual 
neurons. 

Derrington and Lennie (1982) 

This study estimated the psd and spatial and temporal contrast 
sensitivity of X and Y ganglion cells in the cat. They used a 
measuring interval of 3.1 s, divided into 512 bins, each of 6 ms, 
to examine frequencies in octave steps between 0.33 and 42 Hz. 
They used an amplitude, rather than power measure, so their 
psd estimates are biased [eqn. (lo)]. Estimates are based on 30 
replications. In three X cells and two Y cells, they fit a Gauss- 
ian to the distribution of 100 amplitudes. The fit failed in two 
of five cases. This is perhaps to be expected since from the 
above analysis this distribution should be Rayleigh, rather than 
Gaussian. However, the Rayleigh is not so different from the 
Gaussian (see Fig. 4) as to reject all five cases. They note that 
the psd, hence the criterion, hence the contrast sensitivity, all 
depend on T. While they use several values of Tin  measuring 
contrast sensitivity, they normalize all results to a T of 1.5 s. 
They also point out that prediction of psychophysical results re- 
quires an assumption about T. 

They found that the mean of psd is approximately constant 
at about 4 impulses/s/Hz. The S.D. is also approximately con- 
stant at about 0.57 times the mean. This is close to the predicted 
value of 0.523 [eqn. (12)l. Psd's for X and Y cells are essentially 
identical, although mean rate is quite different (51.6 impulse/s 
for X cells, 30.8 impulses/s for Y cells). Contrast sensitivities 
were measured using the yes/no technique, with the criterion set 
to the mean plus two standard deviations. 

Troy (1983a, b) 

In these studies of cat LGN cells, complete psds were reported 
for five X cells and five Y cells. As in Derrington and Lennie 
(1982), psds for X and Y cells were almost identical, and the ra- 
tio of standard deviation to mean is about 0.57, close to the pre- 
dicted value of 0.52 [eqn. (12)l. In addition, distributions of 
power spectrum amplitudes for eight temporal frequencies in 
the maintained discharge were collected (reproduced in Fig. 1 
of this paper). Fit of a Gaussian was rejected in all but one case. 
An amplitude measure and a yes/no method were used. Other 
methods are generally as in Derrington and Lennie (1982). 

Derrington and Lennie (1984) 

This study examined spatial and temporal contrast sensitivity in 
macaque geniculate cells. Complete psds are not reported. Con- 

$If the original process xu) is Gaussian, then c and s will be exactly 
Gaussian. 

trast sensitivity was measured by the same method as in Der- 
rington and Lennie (1982). For most cells criterion was close to 
10 impulses/s. Frequencies between 0.16 and 41.8 Hz were 
used. The measurement duration T is not stated. 

Hawken and Parker (1984) 

A yes/no method was used to measure contrast sensitivity of 
macaque cortical cells. The authors appear to have used an am- 
plitude measure, although this is not explicitly stated. The noise- 
alone psd was estimated from 16 samples. The oldest sample 
was replaced after each stimulus trial. The measurement interval 
is described as equal to the stimulus duration, but is not other- 
wise specified. They used a criterion of mean plus two standard 
deviations. They examined temporal frequencies from 0.75-6.0 
Hz. Evidently not all measures were of contrast sensitivity as 
defined here, since the response measure was "the component 
modulated in synchrony with the passage of the bars of the 
drifting grating or in terms of the overall elevation of the main- 
tained discharge, as was appropriate for each particular cell." 
Analysis of contrast sensitivity of cortical cells must consider 
output nonlinearities and small or absent maintained dis- 
charges, neither of which was considered here. 

Appendix 4 

To supplement the mathematical content of this paper, this Ap- 
pendix contains Mathematica expressions for several of the for- 
mulae used in the text. Mathematica is a program and language 
for manipulating mathematical ideas (Wolfram, 1988). It is 
available for many computers in wide use. To conserve space, 
only definitions and expressions are shown; results of most 
evaluations, including graphics, are omitted. 

Probability densities and distributions 

Chi-square density 
In the following, df = degrees of freedom. 

Chi-square distribution 

Non-central chi-square density 
In the following, df = degrees of freedom and t = non- 

centrality parameter. 

nChiDens[x-,df_,t_] := Block(j), ( l/(Sqrt[Pi] 2"(df/2)) ) * 
Exp[-(t + x)/2] xA(df/2-I) * 
NSum[( (t x)"j / (2 j)! ) Gamma[j+l/2] / 
Gammalj +df/2] 
,(j,  0, Infinity I]] /; x > 0 
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Non-central chi-square distribution 

Rayleigh density 
In the following, s is the standard deviation of the underly- 

ing Gaussians. 

Non-central Rayleigh density 
The argument t is the square root of the sum of squared 

means of the underlying Gaussians. 

Tau vs. 2AFCpercent correct 
This routine finds the value of tau corresponding to a par- 

ticular 2AFC proportion correct. 

findTauFC[p_ ,goal_] : = 
tau /. FindRoot[ tafc[tau,goal] == p 
, (tau,f2.78,2.79),0,10) , AccuracyGoal->goal ] 

The neurometric function 
We create a set of contrasts increasing in 4 octave steps. 

contrast = Table[2"(i/3),(i,-2,4]] //N 

We generate a "neurometric function." Note that tau is propor- 
tional to contrast squared. 

neuro = tafc[contrastA2,3] 

We define a Weibull function. 

SetAttributes[weibull, Listable] 
Y e s h o  method 

This function finds the criterion (lambda) that generates a par- 
ticular false-alarm rate (pf). 

findLambda[pf_,goal_] := x /. FindRoot[ chiDist[x,2] == 
1 -pf 
, (x, [ l ,2) ,0,10) , AccuracyGoal->goal] 

This function finds the value of tau corresponding to a partic- 
ular hit rate (ph) and false-alarm rate (pf). 

findTauYN[ph_,pf_,goal_] : = 
tau /. FindRoot[ nCtuDist[(findLambda[pf,goal]),2,tau] == 

1 -ph 
, (tau,[1,2),0,10) , AccuracyGoal->goal ] 

2AFC method 

Here we compute the probability correct in a 2AFC task where 
the assumed underlying noise distribution is Chi-square with 
2 df, and that of signal is non-central Chi-square with 2 df and 
non-centrality parameter tau. 

2AFC percent correct vs. tau 
This function returns proportion correct in a 2AFC task as 

a function of the non-centrality parameter tau and accuracy 
goal. 

tafc[tau_,goal_] := Block[ (x] ,  
NIntegrate[nChiDens[x,2,tau] ChiDist[x,2] 

, (x,O,Infinity) 
,AccuracyGoal- >goal] ] 

SetAttributes[tafc,Listable] 

We find the best fitting Weibull function, using a simple least- 
squares fit. 

FindMinimum[ 
Apply[Plus, ( neuro - weibull[contrast,alph,bet,0.5] ) 

I 
, (alph,l2,2.1),.5,3) , fbet,(2,31,0,4) I 

(0.000167506, falph -> 1.99878, bet -> 2.07002) 1 
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